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: swmnary Highly enantio- and diastereo-controllec! synthesis of chiral. pheromone, 

nediated eldanolide, was accomplished in both enantiomeric forms, via organoaluminwn-r 

asymmetric pinacol-type rearrangement followed by stereoselective reduction. 

Stereo-defined B-methyl alcohol 1 constitutes a common subunit 

natural products. 
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We have reported a novel and highly stereoselective approach to this class 

of stereostructure in the form of chiral three-B-methyl homoallylic alcohol 2. 

Thereby, the stereo-regulations are executed by (:i)the asymmetric pinacol-type 

rearrangement promoted by Et3A1 (enantio-control), and (2) the highly threo- 

selective reduction of a-alkenyl ketones (diastereo-control), lb) utilizing Me3Si 

group as an efficient controlling factor. Moreover, availability of both (R)- 

and (S)-lactate esters of high enantioneric purities, in conjunction with this 

process, provides a facile and general access to the chiral building block 2 

in both enantioneric forms, lc) which satisfies the basic criterion in the 

synthesis of optically active insect pheromones. 2) 

In this communication, we wish to report a total synthesis of (+)- and (-)- 

eldanolide 3, a wing gland pheromone of african sugar-cane borer Eldana 

saccharina (Wilk.),3) 
I_-- 

______ by way of the methodology stated above. 
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(3S,4R)-(+)-Eldanolide (natural) (3): As the natural eldanolide was shown - 
to possess (3S,4R)-stereochemistry, 3b) our synthesis of this enantiomer started 

with the (S)-lactamide derivative 4, easily available from (S)-ethyl lactate. 1) 

Condensation of 4 with 3-methyl-2-butenyl-l-magnesium bromide under carefully 

controlled conditions (1.5 equiv. /THF, O'C, 4.0 h) gave the prenylated ketone 

5 in 80 % yield. The regioisomeric ratio of this prenylation reaction was - 
20 / 1 (allylation at pr-tmary vs tertiary position) 4) and these isomers were 

easily separated with flash chromatography on silica gel (hexane/AcOEt 97/3).') 

Next, introduction of the vinylsilane moiety, the latent migrating group, was 

performed by the use of organocerium reagent 6) to afford 6 in 91 0 yield. The - 
same transformation using the corresponding lithium or magnesium reagents was 

unsatisfactory due to the highly enolizable nature of the ketone 2 and the 

yields were less than 40 %. The ethoxyethyl group was removed to afford 1. 7) 

With the diol 7 in hand, the pinacol-type rearrangement was carried out 
la) under the conditions previously stated: Mesylation of z with MsCl-Et3N gave 

the corresponding see-mesylate in essentially quantitative yield. After simple 

extractive purification, the mesylate was treated with Me3A1 8, in CH Cl 
f, i8(ie5 

equiv., -78"C, 0.5 h) to afford the rearranged a-alkenyl ketone 8 9) 

yield after purification on silica-gel column chromatography (hexane/AcOEt 97/3). 

Stereoselective reduction of the a-alkenyl ketone 5 was effected by 

LiB(C2H5)3H (Super-Hydride)(Z.O equiv./THF, -78'C; H202) to result in the 

exclusive formation of three-2 (threolerythro = >99/1 by glc),l') while the same 

reduction with L-Selectride, the preferred reagent in our model study, lb) was 

rather sluggish. Reduction with DIBAL was also highly stereoselective in this 

case (threolerythro 53/l). In any case, highly three-selective reduction of 8 

provided diastereomerically pure threo-2, which is reasonably understood in 

terms of the Felkin-Anh's model. 11) Thus, the key intermediate 9 was obtained 

with high enantiomerical and diastereomerical purities. 12) 
- 

Conversion of 2 into eldanolide was accomplished as follows;the Brook-type 

rearrangement of 2 gave the desilylated alcohol 10a in 91 % yield, which was 

converted to phenoxyacetate lob quantitatively. Selective hydroboration of lob 

with dicyclohexylboranefollowed by oxidation gave the alcohol 11 in 93 % yield. - 

Finally, alcohol 11 was oxidized to carboxylic acid,which in turn was converted - 
to eldanolide 2 by successive base-acid treatment ([ali +58.1"(~ 1.29, MeOH), 

lit. [a]:' +.51.5"(c 1.15, MeOH)3b)). Thus, a highly stereo-controlled synthesis 

of (3S,4R)-(+)-eldanolide was achieved based on asymmetric pinacol-type 

rearrangement in an overall yield of 30 %.13) 

(3R,4S)-(-)-Eldanolide (unnatural) (3): Availability of (R)-series of 
14) methyl lactate allowed an access to the antipode of the pheromone, (3R,4S)- 

(-)-eldanolide via the completely same sequence described above; [u], 23 -57.5" 

(c 1.37, EtOH) (lit. [a]:' -52.4"(c 1.51, EtOH)~b)[o]~'-55.90(c 0.81, EtOH)15a)). 

Chiral synthesis of eldanolide has been reported by three groups up to 

the present, 3b,15a,b) the synthesis reported herein adds a novel and highly 

efficient approach to this chiral pheromone. 
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l,O a: R=H Y: 91% 
b: R = PhOCH,$- 

0 

II Y: 93% (3S,4R)-3 Y: 72% 

a) Me2C=CHCH2MgBr / THF, O'C, slow addition during 1.5 h, then 2.5 h at 

OOC, b) H2C=C(SiMe3)Li-CeC13 / THF-Et20-hexane (4/1/l), -78OC, 0.5 h, 

c) cat. PPTS/ MeOH, rt, 1 h, d) MsCl-Et3N / CH2C12, O'C, 5 min, 

e) Me3A1 / CH2C12, -78'C, 0.5 h, f) LiB(C2H513H /THF, -78'c, 5 min; 

H2°2' g) cat. NaH / HMPA, rt, 10 min; PhOCH2COC1 / pyridine-CH2C12, rt, 

10 min, h) cycl0-(C6H~~)~BH / THF, O'C, 3h; H202, pH 7 phosphate 

buffer, i) Cr03 / pyridine, rt, 12 h, j) LiOH / EtOH-H20; dil HCl. 
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